XLAStrategy¶
- class lightning.pytorch.strategies.XLAStrategy(accelerator=None, parallel_devices=None, checkpoint_io=None, precision_plugin=None, debug=False, sync_module_states=True, **_)[source]¶
- Bases: - DDPStrategy- Strategy for training multiple TPU devices using the - torch_xla.distributed.xla_multiprocessing.spawn()method.- all_gather(tensor, group=None, sync_grads=False)[source]¶
- Function to gather a tensor from several distributed processes. 
 - barrier(name=None, *args, **kwargs)[source]¶
- Synchronizes all processes which blocks processes until the whole group enters this function. 
 - process_dataloader(dataloader)[source]¶
- Wraps the dataloader if necessary. - Parameters:
- dataloader¶ ( - object) – iterable. Ideally of type:- torch.utils.data.DataLoader
- Return type:
- MpDeviceLoader
 
 - reduce(output, group=None, reduce_op='mean')[source]¶
- Reduces a tensor from several distributed processes to one aggregated tensor. - Parameters:
- Return type:
- Returns:
- reduced value, except when the input was not a tensor the output remains is unchanged 
 
 - save_checkpoint(checkpoint, filepath, storage_options=None)[source]¶
- Save model/training states as a checkpoint file through state-dump and file-write. 
 - setup(trainer)[source]¶
- Sets up the accelerator, plugins and initializes the optimizers (if needed). 
 - setup_environment()[source]¶
- Setup any processes or distributed connections. - This is called before the LightningModule/DataModule setup hook which allows the user to access the accelerator environment before setup is complete. - Return type: