Convert PyTorch code to Fabric¶
Here are five easy steps to let Fabric scale your PyTorch models.
Step 1: Create the Fabric object at the beginning of your training code.
from lightning.fabric import Fabric
fabric = Fabric()
Step 2: Call launch() if you intend to use multiple devices (e.g., multi-GPU).
fabric.launch()
Step 3: Call setup() on each model and optimizer pair and setup_dataloaders() on all your data loaders.
model, optimizer = fabric.setup(model, optimizer)
dataloader = fabric.setup_dataloaders(dataloader)
Step 4: Remove all .to and .cuda calls since Fabric will take care of it.
- model.to(device)
- batch.to(device)
Step 5: Replace loss.backward() by fabric.backward(loss).
- loss.backward()
+ fabric.backward(loss)
These are all code changes required to prepare your script for Fabric. You can now simply run from the terminal:
python path/to/your/script.py
All steps combined, this is how your code will change:
  import torch
  from lightning.pytorch.demos import WikiText2, Transformer
+ import lightning as L
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ fabric = L.Fabric(accelerator="cuda", devices=8, strategy="ddp")
+ fabric.launch()
  dataset = WikiText2()
  dataloader = torch.utils.data.DataLoader(dataset)
  model = Transformer(vocab_size=dataset.vocab_size)
  optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
- model = model.to(device)
+ model, optimizer = fabric.setup(model, optimizer)
+ dataloader = fabric.setup_dataloaders(dataloader)
  model.train()
  for epoch in range(20):
      for batch in dataloader:
          input, target = batch
-         input, target = input.to(device), target.to(device)
          optimizer.zero_grad()
          output = model(input, target)
          loss = torch.nn.functional.nll_loss(output, target.view(-1))
-         loss.backward()
+         fabric.backward(loss)
          optimizer.step()
That’s it! You can now train on any device at any scale with a switch of a flag. Check out our before-and-after example for image classification and many more examples that use Fabric.
Optional changes¶
Here are a few optional upgrades you can make to your code, if applicable:
- Replace - torch.save()and- torch.load()with Fabric’s save and load methods.
- Replace collective operations from - torch.distributed(barrier, broadcast, etc.) with Fabric’s collective methods.
- Use Fabric’s no_backward_sync() context manager if you implemented gradient accumulation. 
- Initialize your model under the init_module() context manager.